Package 'StanEstimators'

Title: Estimate Parameters for Arbitrary R Functions using 'Stan'
Description: Allows for the estimation of parameters for 'R' functions using the various algorithms implemented in the 'Stan' probabilistic programming language.
Authors: Andrew R. Johnson [aut, cre] , Jonah Gabry [ctb], Rok Češnovar [ctb], Stan Development Team [cph] (CmdStan sources and headers), Lawrence Livermore National Security [cph] (SUNDIALS sources and headers)
Maintainer: Andrew R. Johnson <[email protected]>
License: MIT + file LICENSE
Version: 0.1.2.9000
Built: 2025-01-06 05:50:36 UTC
Source: https://github.com/andrjohns/StanEstimators

Help Index


The StanEstimators package.

Description

ToDO

Author(s)

Maintainer: Andrew R. Johnson [email protected] (ORCID)

Other contributors:

  • Jonah Gabry [email protected] [contributor]

  • Rok Češnovar [email protected] [contributor]

  • Stan Development Team (CmdStan sources and headers) [copyright holder]

  • Lawrence Livermore National Security (SUNDIALS sources and headers) [copyright holder]


Constrain a vector of variables.

Description

Constrain a vector of variables.

Usage

constrain_variables(stan_object, unconstrained_variables)

## S4 method for signature 'StanBase'
constrain_variables(stan_object, unconstrained_variables)

Arguments

stan_object

A StanBase object.

unconstrained_variables

Vector of unconstrained variables.


Calculate the log probability and its gradient of the model given a vector of unconstrained variables.

Description

Calculate the log probability and its gradient of the model given a vector of unconstrained variables.

Usage

grad_log_prob(stan_object, unconstrained_variables, jacobian = TRUE)

## S4 method for signature 'StanBase'
grad_log_prob(stan_object, unconstrained_variables, jacobian = TRUE)

Arguments

stan_object

A StanBase object.

unconstrained_variables

Vector of unconstrained variables.

jacobian

Whether to include the Jacobian adjustment.


Calculate the log probability, its gradient, and its hessian matrix of the model given a vector of unconstrained variables.

Description

Calculate the log probability, its gradient, and its hessian matrix of the model given a vector of unconstrained variables.

Usage

hessian(stan_object, unconstrained_variables, jacobian = TRUE)

## S4 method for signature 'StanBase'
hessian(stan_object, unconstrained_variables, jacobian = TRUE)

Arguments

stan_object

A StanBase object.

unconstrained_variables

Vector of unconstrained variables.

jacobian

Whether to include the Jacobian adjustment.


Calculate the log probability of the model given a vector of unconstrained variables.

Description

Calculate the log probability of the model given a vector of unconstrained variables.

Usage

log_prob(stan_object, unconstrained_variables, jacobian = TRUE)

## S4 method for signature 'StanBase'
log_prob(stan_object, unconstrained_variables, jacobian = TRUE)

Arguments

stan_object

A StanBase object.

unconstrained_variables

Vector of unconstrained variables.

jacobian

Whether to include the Jacobian adjustment.


Calculate approximate leave-one-out cross-validation (LOO-CV) for a model.

Description

Calculate approximate leave-one-out cross-validation (LOO-CV) for a model.

Usage

## S3 method for class 'StanBase'
loo(x, pointwise_ll_fun, additional_args = list(), moment_match = FALSE, ...)

Arguments

x

A StanBase object.

pointwise_ll_fun

Function that calculates the pointwise log-likelihood given a vector of parameter values.

additional_args

List of additional arguments to be passed to pointwise_ll_fun.

moment_match

(logical) Whether to use a moment-matching correction for problematic observations.

...

Additional arguments to be passed to loo::loo().


stan_diagnose

Description

Check gradient estimation using Stan's 'Diagnose' method

Usage

stan_diagnose(
  fn,
  par_inits = NULL,
  n_pars = NULL,
  additional_args = list(),
  grad_fun = NULL,
  lower = -Inf,
  upper = Inf,
  eval_standalone = FALSE,
  globals = TRUE,
  packages = NULL,
  seed = NULL,
  refresh = NULL,
  quiet = FALSE,
  output_dir = NULL,
  output_basename = NULL,
  sig_figs = NULL
)

Arguments

fn

Function to estimate parameters for

par_inits

Initial values for parameters (must be specified if n_pars is NULL)

n_pars

Number of parameters to estimate (must be specified if par_inits is NULL)

additional_args

List of additional arguments to pass to the function

grad_fun

Function calculating gradients w.r.t. each parameter

lower

Lower bound constraint(s) for parameters

upper

Upper bound constraint(s) for parameters

eval_standalone

(logical) Whether to evaluate the function in a separate R session. Defaults to FALSE.

globals

(optional) a logical, a character vector, or a named list to control how globals are handled when evaluating functions in a separate R session. Ignored if eval_standalone = FALSE. For details, see section 'Globals used by future expressions' in the help for future::future().

packages

(optional) a character vector specifying packages to be attached in the R environment evaluating the function. Ignored if eval_standalone = FALSE.

seed

Random seed

refresh

Number of iterations for printing

quiet

(logical) Whether to suppress Stan's output

output_dir

Directory to store outputs

output_basename

Basename to use for output files

sig_figs

Number of significant digits to use for printing

Value

StanLaplace object


stan_laplace

Description

Estimate parameters using Stan's laplace algorithm

Usage

stan_laplace(
  fn,
  par_inits = NULL,
  n_pars = NULL,
  additional_args = list(),
  grad_fun = NULL,
  lower = -Inf,
  upper = Inf,
  eval_standalone = FALSE,
  globals = TRUE,
  packages = NULL,
  seed = NULL,
  refresh = NULL,
  quiet = FALSE,
  output_dir = NULL,
  output_basename = NULL,
  sig_figs = NULL,
  mode = NULL,
  jacobian = NULL,
  draws = NULL,
  opt_args = NULL
)

Arguments

fn

Function to estimate parameters for

par_inits

Initial values for parameters (must be specified if n_pars is NULL)

n_pars

Number of parameters to estimate (must be specified if par_inits is NULL)

additional_args

List of additional arguments to pass to the function

grad_fun

Function calculating gradients w.r.t. each parameter

lower

Lower bound constraint(s) for parameters

upper

Upper bound constraint(s) for parameters

eval_standalone

(logical) Whether to evaluate the function in a separate R session. Defaults to FALSE.

globals

(optional) a logical, a character vector, or a named list to control how globals are handled when evaluating functions in a separate R session. Ignored if eval_standalone = FALSE. For details, see section 'Globals used by future expressions' in the help for future::future().

packages

(optional) a character vector specifying packages to be attached in the R environment evaluating the function. Ignored if eval_standalone = FALSE.

seed

Random seed

refresh

Number of iterations for printing

quiet

(logical) Whether to suppress Stan's output

output_dir

Directory to store outputs

output_basename

Basename to use for output files

sig_figs

Number of significant digits to use for printing

mode

Mode for the laplace approximation, can either be a vector of values, a StanOptimize object, or NULL.

jacobian

(logical) Whether or not to use the Jacobian adjustment for constrained variables.

draws

(positive integer) Number of approximate posterior samples to draw and save.

opt_args

(named list) A named list of optional arguments to pass to stan_optimize() if mode=NULL.

Value

StanLaplace object


stan_optimize

Description

Estimate parameters using Stan's optimization algorithms

Usage

stan_optimize(
  fn,
  par_inits = NULL,
  n_pars = NULL,
  additional_args = list(),
  algorithm = "lbfgs",
  grad_fun = NULL,
  lower = -Inf,
  upper = Inf,
  eval_standalone = FALSE,
  globals = TRUE,
  packages = NULL,
  seed = NULL,
  refresh = NULL,
  quiet = FALSE,
  output_dir = NULL,
  output_basename = NULL,
  sig_figs = NULL,
  save_iterations = NULL,
  jacobian = NULL,
  init_alpha = NULL,
  iter = NULL,
  tol_obj = NULL,
  tol_rel_obj = NULL,
  tol_grad = NULL,
  tol_rel_grad = NULL,
  tol_param = NULL,
  history_size = NULL
)

Arguments

fn

Function to estimate parameters for

par_inits

Initial values for parameters (must be specified if n_pars is NULL)

n_pars

Number of parameters to estimate (must be specified if par_inits is NULL)

additional_args

List of additional arguments to pass to the function

algorithm

(string) The optimization algorithm. One of "lbfgs", "bfgs", or "newton".

grad_fun

Function calculating gradients w.r.t. each parameter

lower

Lower bound constraint(s) for parameters

upper

Upper bound constraint(s) for parameters

eval_standalone

(logical) Whether to evaluate the function in a separate R session. Defaults to FALSE.

globals

(optional) a logical, a character vector, or a named list to control how globals are handled when evaluating functions in a separate R session. Ignored if eval_standalone = FALSE. For details, see section 'Globals used by future expressions' in the help for future::future().

packages

(optional) a character vector specifying packages to be attached in the R environment evaluating the function. Ignored if eval_standalone = FALSE.

seed

Random seed

refresh

Number of iterations for printing

quiet

(logical) Whether to suppress Stan's output

output_dir

Directory to store outputs

output_basename

Basename to use for output files

sig_figs

Number of significant digits to use for printing

save_iterations

Save optimization iterations to output file

jacobian

(logical) Whether or not to use the Jacobian adjustment for constrained variables. For historical reasons, the default is FALSE, meaning optimization yields the (regularized) maximum likelihood estimate. Setting it to TRUE yields the maximum a posteriori estimate.

init_alpha

(positive real) The initial step size parameter.

iter

(positive integer) The maximum number of iterations.

tol_obj

(positive real) Convergence tolerance on changes in objective function value.

tol_rel_obj

(positive real) Convergence tolerance on relative changes in objective function value.

tol_grad

(positive real) Convergence tolerance on the norm of the gradient.

tol_rel_grad

(positive real) Convergence tolerance on the relative norm of the gradient.

tol_param

(positive real) Convergence tolerance on changes in parameter value.

history_size

(positive integer) The size of the history used when approximating the Hessian. Only available for L-BFGS.

Value

StanOptimize object


stan_pathfinder

Description

Estimate parameters using Stan's pathfinder algorithm

Usage

stan_pathfinder(
  fn,
  par_inits = NULL,
  n_pars = NULL,
  additional_args = list(),
  grad_fun = NULL,
  lower = -Inf,
  upper = Inf,
  eval_standalone = FALSE,
  globals = TRUE,
  packages = NULL,
  seed = NULL,
  refresh = NULL,
  quiet = FALSE,
  output_dir = NULL,
  output_basename = NULL,
  sig_figs = NULL,
  init_alpha = NULL,
  tol_obj = NULL,
  tol_rel_obj = NULL,
  tol_grad = NULL,
  tol_rel_grad = NULL,
  tol_param = NULL,
  history_size = NULL,
  num_psis_draws = NULL,
  num_paths = NULL,
  save_single_paths = NULL,
  max_lbfgs_iters = NULL,
  num_draws = NULL,
  num_elbo_draws = NULL
)

Arguments

fn

Function to estimate parameters for

par_inits

Initial values for parameters (must be specified if n_pars is NULL)

n_pars

Number of parameters to estimate (must be specified if par_inits is NULL)

additional_args

List of additional arguments to pass to the function

grad_fun

Function calculating gradients w.r.t. each parameter

lower

Lower bound constraint(s) for parameters

upper

Upper bound constraint(s) for parameters

eval_standalone

(logical) Whether to evaluate the function in a separate R session. Defaults to FALSE.

globals

(optional) a logical, a character vector, or a named list to control how globals are handled when evaluating functions in a separate R session. Ignored if eval_standalone = FALSE. For details, see section 'Globals used by future expressions' in the help for future::future().

packages

(optional) a character vector specifying packages to be attached in the R environment evaluating the function. Ignored if eval_standalone = FALSE.

seed

Random seed

refresh

Number of iterations for printing

quiet

(logical) Whether to suppress Stan's output

output_dir

Directory to store outputs

output_basename

Basename to use for output files

sig_figs

Number of significant digits to use for printing

init_alpha

(positive real) The initial step size parameter.

tol_obj

(positive real) Convergence tolerance on changes in objective function value.

tol_rel_obj

(positive real) Convergence tolerance on relative changes in objective function value.

tol_grad

(positive real) Convergence tolerance on the norm of the gradient.

tol_rel_grad

(positive real) Convergence tolerance on the relative norm of the gradient.

tol_param

(positive real) Convergence tolerance on changes in parameter value.

history_size

(positive integer) The size of the history used when approximating the Hessian.

num_psis_draws

(positive integer) Number PSIS draws to return.

num_paths

(positive integer) Number of single pathfinders to run.

save_single_paths

(logical) Whether to save the results of single pathfinder runs in multi-pathfinder.

max_lbfgs_iters

(positive integer) The maximum number of iterations for LBFGS.

num_draws

(positive integer) Number of draws to return after performing pareto smooted importance sampling (PSIS).

num_elbo_draws

(positive integer) Number of draws to make when calculating the ELBO of the approximation at each iteration of LBFGS.

Value

StanPathfinder object


stan_sample

Description

Estimate parameters using Stan's sampling algorithms

Usage

stan_sample(
  fn,
  par_inits = NULL,
  n_pars = NULL,
  additional_args = list(),
  algorithm = "hmc",
  engine = "nuts",
  grad_fun = NULL,
  lower = -Inf,
  upper = Inf,
  eval_standalone = (parallel_chains > 1),
  globals = TRUE,
  packages = NULL,
  seed = NULL,
  refresh = NULL,
  quiet = FALSE,
  output_dir = NULL,
  output_basename = NULL,
  sig_figs = NULL,
  num_chains = 4,
  parallel_chains = 1,
  num_samples = 1000,
  num_warmup = 1000,
  save_warmup = NULL,
  thin = NULL,
  adapt_engaged = NULL,
  adapt_gamma = NULL,
  adapt_delta = NULL,
  adapt_kappa = NULL,
  adapt_t0 = NULL,
  adapt_init_buffer = NULL,
  adapt_term_buffer = NULL,
  adapt_window = NULL,
  int_time = NULL,
  max_treedepth = NULL,
  metric = NULL,
  metric_file = NULL,
  stepsize = NULL,
  stepsize_jitter = NULL
)

Arguments

fn

Function to estimate parameters for

par_inits

Initial values for parameters (must be specified if n_pars is NULL)

n_pars

Number of parameters to estimate (must be specified if par_inits is NULL)

additional_args

List of additional arguments to pass to the function

algorithm

(string) The sampling algorithm. One of "hmc" or "fixed_param".

engine

(string) The HMC engine to use, one of "nuts" or "static"

grad_fun

Function calculating gradients w.r.t. each parameter

lower

Lower bound constraint(s) for parameters

upper

Upper bound constraint(s) for parameters

eval_standalone

(logical) Whether to evaluate the function in a separate R session. Defaults to (parallel_chains > 1). Must be TRUE if parallel_chains > 1.

globals

(optional) a logical, a character vector, or a named list to control how globals are handled when evaluating functions in a separate R session. Ignored if eval_standalone = FALSE. For details, see section 'Globals used by future expressions' in the help for future::future().

packages

(optional) a character vector specifying packages to be attached in the R environment evaluating the function. Ignored if eval_standalone = FALSE.

seed

Random seed

refresh

Number of iterations for printing

quiet

(logical) Whether to suppress Stan's output

output_dir

Directory to store outputs

output_basename

Basename to use for output files

sig_figs

Number of significant digits to use for printing

num_chains

(positive integer) The number of Markov chains to run. The default is 4.

parallel_chains

(positive integer) The number of chains to run in parallel, the default is 1.

num_samples

(positive integer) The number of post-warmup iterations to run per chain.

num_warmup

(positive integer) The number of warmup iterations to run per chain.

save_warmup

(logical) Should warmup iterations be saved? The default is FALSE.

thin

(positive integer) The period between saved samples. This should typically be left at its default (no thinning) unless memory is a problem.

adapt_engaged

(logical) Do warmup adaptation? The default is TRUE.

adapt_gamma

(positive real) Adaptation regularization scale.

adapt_delta

(real in ⁠(0,1)⁠) The adaptation target acceptance statistic.

adapt_kappa

(positive real) Adaptation relaxation exponent.

adapt_t0

(positive real) Adaptation iteration offset.

adapt_init_buffer

(nonnegative integer) Width of initial fast timestep adaptation interval during warmup.

adapt_term_buffer

(nonnegative integer) Width of final fast timestep adaptation interval during warmup.

adapt_window

(nonnegative integer) Initial width of slow timestep/metric adaptation interval.

int_time

(positive real) Total integration time

max_treedepth

(positive integer) The maximum allowed tree depth for the NUTS engine.

metric

(string) One of "diag_e", "dense_e", or "unit_e", specifying the geometry of the base manifold.

metric_file

(character vector) The paths to JSON or Rdump files (one per chain) compatible with CmdStan that contain precomputed inverse metrics.

stepsize

(positive real) The initial step size for the discrete approximation to continuous Hamiltonian dynamics.

stepsize_jitter

(real in ⁠(0,1)⁠) Allows step size to be “jittered” randomly during sampling to avoid any poor interactions with a fixed step size and regions of high curvature.

Value

StanMCMC object


stan_variational

Description

Estimate parameters using Stan's variational inference algorithms

Usage

stan_variational(
  fn,
  par_inits = NULL,
  n_pars = NULL,
  additional_args = list(),
  algorithm = "meanfield",
  grad_fun = NULL,
  lower = -Inf,
  upper = Inf,
  eval_standalone = FALSE,
  globals = TRUE,
  packages = NULL,
  seed = NULL,
  refresh = NULL,
  quiet = FALSE,
  output_dir = NULL,
  output_basename = NULL,
  sig_figs = NULL,
  iter = NULL,
  grad_samples = NULL,
  elbo_samples = NULL,
  eta = NULL,
  adapt_engaged = NULL,
  adapt_iter = NULL,
  tol_rel_obj = NULL,
  eval_elbo = NULL,
  output_samples = NULL
)

Arguments

fn

Function to estimate parameters for

par_inits

Initial values for parameters (must be specified if n_pars is NULL)

n_pars

Number of parameters to estimate (must be specified if par_inits is NULL)

additional_args

List of additional arguments to pass to the function

algorithm

(string) The variational inference algorithm. One of "meanfield" or "fullrank".

grad_fun

Function calculating gradients w.r.t. each parameter

lower

Lower bound constraint(s) for parameters

upper

Upper bound constraint(s) for parameters

eval_standalone

(logical) Whether to evaluate the function in a separate R session. Defaults to FALSE.

globals

(optional) a logical, a character vector, or a named list to control how globals are handled when evaluating functions in a separate R session. Ignored if eval_standalone = FALSE. For details, see section 'Globals used by future expressions' in the help for future::future().

packages

(optional) a character vector specifying packages to be attached in the R environment evaluating the function. Ignored if eval_standalone = FALSE.

seed

Random seed

refresh

Number of iterations for printing

quiet

(logical) Whether to suppress Stan's output

output_dir

Directory to store outputs

output_basename

Basename to use for output files

sig_figs

Number of significant digits to use for printing

iter

(positive integer) The maximum number of iterations.

grad_samples

(positive integer) The number of samples for Monte Carlo estimate of gradients.

elbo_samples

(positive integer) The number of samples for Monte Carlo estimate of ELBO (objective function).

eta

(positive real) The step size weighting parameter for adaptive step size sequence.

adapt_engaged

(logical) Do warmup adaptation?

adapt_iter

(positive integer) The maximum number of adaptation iterations.

tol_rel_obj

(positive real) Convergence tolerance on the relative norm of the objective.

eval_elbo

(positive integer) Evaluate ELBO every Nth iteration.

output_samples

(positive integer) Number of approximate posterior samples to draw and save.

Value

StanVariational object


stan_versions

Description

stan_versions

Usage

stan_versions()

Value

A named list with the Stan and Stan Math library versions


StanBase base class

Description

StanBase base class


Summary method for objects of class StanLaplace.

Description

Summary method for objects of class StanLaplace.

Usage

## S4 method for signature 'StanLaplace'
summary(object, ...)

Arguments

object

A StanLaplace object.

...

Additional arguments, currently unused.


Summary method for objects of class StanMCMC.

Description

Summary method for objects of class StanMCMC.

Usage

## S4 method for signature 'StanMCMC'
summary(object, ...)

Arguments

object

A StanMCMC object.

...

Additional arguments, currently unused.


Summary method for objects of class StanOptimize.

Description

Summary method for objects of class StanOptimize.

Usage

## S4 method for signature 'StanOptimize'
summary(object, ...)

Arguments

object

A StanOptimize object.

...

Additional arguments, currently unused.


Summary method for objects of class StanPathfinder.

Description

Summary method for objects of class StanPathfinder.

Usage

## S4 method for signature 'StanPathfinder'
summary(object, ...)

Arguments

object

A StanPathfinder object.

...

Additional arguments, currently unused.


Summary method for objects of class StanVariational.

Description

Summary method for objects of class StanVariational.

Usage

## S4 method for signature 'StanVariational'
summary(object, ...)

Arguments

object

A StanVariational object.

...

Additional arguments, currently unused.


Unconstrain all parameter draws.

Description

Unconstrain all parameter draws.

Usage

unconstrain_draws(stan_object, draws = NULL)

## S4 method for signature 'StanBase'
unconstrain_draws(stan_object, draws = NULL)

## S4 method for signature 'StanOptimize'
unconstrain_draws(stan_object, draws = NULL)

Arguments

stan_object

A StanBase object.

draws

(optional) A ⁠posterior::draws_*⁠ object to be unconstrained (instead of the draws in the StanBase object).


Unconstrain a vector of variables.

Description

Unconstrain a vector of variables.

Usage

unconstrain_variables(stan_object, variables)

## S4 method for signature 'StanBase'
unconstrain_variables(stan_object, variables)

Arguments

stan_object

A StanBase object.

variables

Vector of variables to be unconstrained.